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Abstract

Objective information from credible sources is critical for e�cient policy that in-

volves uncertain outcomes. This paper presents evidence that scienti�c projections are

under-utilized in decisions involving dynamic risks. We leverage the COVID-19 pan-

demic, using plausibly exogenous updates to the dominant model on death projections

and show revealed mitigation actions were largely driven by contemporary outcomes

over scienti�c predictions. Further, we document behavior consistent with cognitive dis-

sonance: agents favor scienti�c forecasts when they predict more optimistic outcomes.

When taken to the context of climate policy, we demonstrate that these estimates would

imply an undervaluing of carbon costs of 50 percent.
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1 Introduction

Credible information is a crucial component to solving complex problems in the realm of

policy making. Information gathering is often outsourced to outside agencies made up of

experts in the speci�c area of interest, conducting technical analyses, not usually feasible nor

practical for politicians to conduct on their own. The ultimate output may include precise

engineering estimates for proposed infrastructure projects, or tax elasticities for use in federal

appropriations. This system creates an e�cient means of making important decisions and

overcomes the injection of ideology into a problem that can otherwise be solved objectively.

One of the most relevant situations in which policy hinges on sound scienti�c evidence

relates to climate change. As current damages are not necessarily indicative of future dam-

ages, projecting into the future becomes a necessary task. While damages from an event

such as an oil spill are both salient and immediately detectable, many environmental out-

comes are slowly evolving, often playing out over many decades. Millner and Ollivier (2016)

argue that the human detachment between certain actions and their long-run impacts on

the environment often lead us to think abstractly, while generating skewed perceptions of

cause and e�ect. While politicians may have access to more objective information than the

average person, their objectives are often rooted in both their own ideological philosophies,

and those of their constituents. The result is a population highly skeptical of the role that

humans play in modern warming. A Yale study on climate opinions shows that only 57

percent of adults believe that climate change is caused by human activities (Marlon et al.,

2020). Kahan, Jenkins-Smith, and Braman (2010) demonstrate that people's perception

of the degree of scienti�c consensus on climate change varies by political preference. Such

skepticism of scienti�c evidence will ultimately hinder any e�orts to form e�cient climate

policy.

Most of the evidence on how people process and utilize scienti�c information from vary-

ing perspectives is anecdotal. Some survey and stated-preference studies have documented

evidence that beliefs of individuals often diverge from scienti�c consensus (Kahan, Jenkins-

Smith, and Braman, 2010; Howe et al., 2015; Leiserowitz et al., 2016; Millner and Ollivier,

2016), but identifying a causal relationship and a clear mechanism is a di�cult task. This
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paper measures the extent to which scienti�c estimates are ignored by individuals, while

instead favoring a myopic belief based on the present state of the world. We study the

COVID-19 pandemic, where estimates for future deaths were both salient and widely ac-

cessible for decision making. We leverage the rollout of COVID-19 death projections from

the Institute for Health Metrics and Evaluation (IHME)�the sole source of estimates used

by, and frequently cited by, the White House Coronavirus Task Force under the Trump Ad-

ministration in 2020. The frequent, but unpredictable, discrete adjustments to the IHME

forecasts across all U.S. states provides plausibly exogenous variation to credibly identify

how this information was internalized in mitigation decisions. Combining this information

with the widely broadcasted data on current deaths allows us to pin down the extent to

which one metric was used over the other.

This paper incorporates quasi-experimental variation from both projected and contem-

poraneous deaths into an empirical model of risk mitigation. To overcome endogeneity from

the direct use of broad mitigation measures, such as lockdowns, we examine the ultimate mo-

bility outcomes of these policies.1 Using data from SafeGraph, we jointly estimate the causal

e�ects of both contemporary deaths and projected deaths on mobility outcomes, at a daily

frequency. The ratio of the coe�cients on these two variables is interpreted as a measure of

the extent to which one metric was used over the other in risk mitigation strategies. To con-

�rm that these two metrics are internalized into choices for dynamic risk mitigation purposes

(i.e., to mitigate future risk), we additionally calculate this ratio on lagged variables, with

the expectation that dynamic mitigation strategies will have longer run e�ects on mobility

(e.g., through a lockdown). This is in contrast to the contemporaneous e�ects that may be

observed from an individual mitigating personal risk, conditional only on current levels of

deaths. By con�rming robustness across these alternative speci�cations, we conclude that

the majority of this e�ect is through the dynamic risk mitigation channel.

Estimates suggest that only 25 percent weight is placed on scienti�c estimates when

making decisions to mitigate the risks of COVID-19. However, the data suggest that this

1The use of lockdowns measures as an outcome of responses to COVID deaths may produce biased
estimates, as these types of policies are also likely to have a direct e�ect on the number of deaths. The use
of individual mobility is less likely to create reverse causality concerns, as mobility today is not likely to
impact deaths today in a signi�cant manner.
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e�ect is not merely a constant. To explore the potential mechanisms driving this result, we

test whether the revealed utilization of these scienti�c forecasts varies based on their relative

magnitude.2 Cognitive dissonance theory (Festinger, 1957) suggests that, when mitigation is

costly, agents may adapt their beliefs in favor of the forecast that is most consistent with their

preferred, low-mitigating strategy. Results illustrate this point exactly. When the magnitude

of a forecast decreases, relative to the current level of deaths, the emphasis placed on the

forecast increases. These results suggests that agents strategically select which information

to utilize, taking the scienti�c projection as the preferred forecast when it presents a more

optimistic outlook.

To put this analysis of revealed preferences in the COVID context into broader per-

spective, we explore an analogous model of climate risk mitigation. Speci�cally, we apply

the weighting parameter revealed from the COVID response to a similar model of climate

change mitigation, using estimates generated from the Dynamic Integrated Climate-Economy

(DICE) model (Nordhaus and Boyer, 2000; Nordhaus, 2008).3 Weighting both the social cost

of carbon estimates (a projection) and the contemporary damages of CO2 (a myopic outlook)

in a similar manner to the main analysis allows for the calculation of a �perceived� social

cost of carbon, which this paper argues, is the politically feasible carbon tax. This exercise

illustrates that, under the same weighting revealed in the context of COVID, the perceived

social cost of carbon would undervalue the cost of climate change by as much as 50 percent.4

The main result of this paper suggests that scienti�c projections may not be internalized

in the decision making process to the degree to which they should when they represent the

best information available. The results have signi�cant implications for policy-making when

the solution to a policy issue requires the use of scienti�c estimates.5 In the setting of climate

policy, when the cost of CO2 is not fully incorporated into carbon intensive activities, climate

2By allowing this weight parameter to vary based on the relative magnitude of projections compared to
current death levels, this should further isolate responses through the dynamic risk mitigation mechanism.
In Section 5.4, we estimate the e�ects that derive strictly from this di�erential e�ect by setting the estimated
baseline e�ect equal to zero.

3Speci�cally, this paper uses the DICE-2016R model (Nordhaus, 2017, 2019).
4This paper does not claim that this is the true �perceived� social cost of carbon, as the weighting

parameter used is directly derived from the response to COVID. This estimate should strictly be used to
put the main analysis into a broader perspective.

5Oates and Portney (2003) survey the extensive literature on infusion of politics into environmental
regulation.
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damages will approach ine�cient levels. Correcting these market failures hinges on accurate

estimates of the social cost of carbon. Even in the case of uncertain climate outcomes (e.g.,

Millner, Dietz, and Heal, 2013; Heal and Millner, 2014; van den Bremer and van der Ploeg,

2021), the utilization of objective analyses likely dominates from an e�ciency perspective,

where alternative approaches may rely more on biased beliefs (Millner and Ollivier, 2016).

This paper relates to a large literature on the economics of information, begun by Stigler

(1961). Recent work on consumer attention have focused on the cost of information search

and the idea that the most salient features of a problem (e.g., most salient attributes of a

product) yield the highest attention from consumers (Gabaix and Laibson, 2005; Gabaix,

2014; Sallee, 2014; Bordalo, Gennaioli, and Shleifer, 2016). While the results in this paper

suggest that the most salient information component in mitigation e�orts is the current

state of the world, the focus on dynamic expectations contrasts it from the majority of this

literature.

State-based expectations are central to the model proposed in this paper and are a feature

in a number of behavioral models of belief formation. The mechanisms explored here broadly

relate to the literature on projection bias (Loewenstein, O'Donoghue, and Rabin, 2003;

Conlin, O'Donoghue, and Vogelsang, 2007; Busse et al., 2014), anchoring heuristics (Slovic,

1967; Tversky and Kahneman, 1974; Crandall and Graham, 1989; Furnham, 2011), and

particularly, cognitive dissonance (Festinger, 1957). Cognitive dissonance theory (Festinger,

1957) argues that individuals seek psychological consistencey, for example, through their

actions and their beliefs. Internal inconsistency leads to stressful behavior for agents, often

causing them to generate consistency by altering beliefs in a manner that rationalizes their

behavior, or by avoiding particular information that leads to this dissonance. This paper

presents results consistent with this idea: the evidence suggests that individuals strategically

align with the more optimistic projection when making mitigation choices. This strategic

choice is consistent with the principle behind con�rmation bias (Nickerson, 1998), arguing

that individuals place too much weight on information that con�rms their prior beliefs.

Of ultimate interest in this paper is the trade-o�s between the utilization of reputable

scienti�c information and one's own myopic expectations of events. Belief formation in the

area of climate change has been empirically documented to a limited degree. Schlenker and
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Taylor (2021) examine the role of temperature expectations in �nancial securities that de-

pend on future weather. They are able to show that the price of these securities accurately

incorporate weather expectations based on climatic model projections. These results di�er

substantially from those in this paper, which suggest that scienti�c projections are likely

under-emphasized in decision making. The setting also di�ers; while Schlenker and Tay-

lor (2021) examine �nancial markets o�ering strong monetary incentives, decisions in the

COVID setting were often politically motivated (Fisman et al., 2021; Durante, Guiso, and

Gulino, 2021; Pulejo and Querubín, 2021). This creates a more likely setting for the infusion

of ideological preferences into one's beliefs.

The empirical literature on climate beliefs have mainly been based on survey and stated

belief studies. The research has shown high geographic variability in climate beliefs across

the U.S. (Howe et al., 2015; Leiserowitz et al., 2016; Marlon et al., 2020). While informative,

these studies likely su�er from the same issues as those of stated preference studies (Car-

son et al., 1996; Hanley and Czajkowski, 2019; Mendelsohn, 2019). That is, these studies

often rely on answers to hypothetical questions, where respondents' answers may not accu-

rately re�ect what their true behavior would be. Proponents of revealed preference methods

argue that, when possible, market settings can provide a more accurate depiction of under-

lying preferences through prices and a consumer's incentive to maximize individual surplus.

Similarly, in the context of this paper, political and economic incentives may a�ect how

individuals incorporate di�erent sources of information into their decisions.6 Thus, as the

literature suggests (e.g., Carson et al., 1996), stated and revealed beliefs may not converge

in certain situations.

Reducing the cost of climate change down to a socially e�cient level means being able to

incorporate true damages into the price of carbon intensive activities. However, implementa-

tion of a carbon tax has many political challenges. Ideological di�erences, self-interests, and

skepticism to scienti�c models may all play a role. These factors a�ect the extent to which

individuals and policy makers incorporate objective information into their choices. Reducing

the role that these biases play in decisions is necessary for e�cient policy-making to take

6See Mullainathan andWashington (2009) and Comin and Rode (2015) for the role of cognitive dissonance
in political preferences.
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place. However, understanding the manner in which objective information is internalized is

a critical �rst step.

The paper proceeds as follows: Section 2 lays out a simple theoretical framework of

decision making under di�erent belief types. Section 3 presents the empirical approach used

to identify how agents utilize di�erent sources of information in the COVID setting. Section

4 discusses the data used in this paper. Section 5 presents the main estimation results of

the paper. Section 6 applies the main results of this paper to an analogous climate policy

setting. Section 7 concludes with a brief discussion of the �ndings in this paper and their

implications.

2 Conceptual Framework

This paper begins with a stylized model of a community's decision to mitigate risks asso-

ciated with environmentally damaging activities. In what directly follows, the basic model

defers on the exact mitigation policy, which may include strategies such as carbon pricing or

emissions mandates. One may interpret the level of mitigation taken as the extent to which

an externality-correcting policy is imposed on agents, such as the level of Pigouvian tax to

be implemented.

The decision to mitigate environmental risks depends both on how a community makes

use of information on future damages and how they expect their mitigation strategies to

a�ect those baseline beliefs. In the model that follows, let j represent a speci�c community

from the set of possible communities, 1, 2, ...N . Mitigation strategies are restricted to be

made at the community level for convenience, which in practice, may represent regions such

as states, countries, or a broader geographic region. One may interpret the decision-maker

as a policy-maker for community j who determines mitigation policy implementation. In

what follows, we introduce a simple two period model. For simplicity, we assume a discount

rate of zero.

When making mitigation decisions, the community conditions its choice at time t on the

future state of damages in period t′. Let djt′ represent the total damages in community j at

time t′ generated by a given externalitiy-producing activity at time t < t′. Mitigation today
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limits the magnitude of these future damages, but does not directly a�ect outcomes today.

The degree of mitigation taken depends on the policy-maker's expectations of its ultimate

e�ects. De�ne Dj as cumulative damages between t and t′. That is,

Dj = djt + djt′ (1)

In the indeterminate case, only damages are know in the present period, and expectations

are formed on the future period. Suppose that there are two approaches to deriving these

expectations, through the scienti�c authority�who form projections of future damages based

on all available scienti�c information�and through a baseline, myopic expectation, which

conditions on the present state of damages. The former is assumed to be widely available to

decision makers through periodic publication. For simplicity, we assume that the baseline

belief is that damages remain constant at current levels. Accordingly, de�ne two types of

beliefs: scienti�c and myopic.

Let θ ∈ {science,myopic} be an agent's type, where type science takes the scienti�c

projection as the truth, and makes mitigation decisions accordingly. Beliefs of type myopic

disregard scienti�c projections and condition their decisions on the current state of damages.

The scienti�c authority conditions its projections on all available information at time t

(including their expectation of mitigation decisions), and derives the forecast Et[djt′ ].

Let δ : R → R
+ be a mapping whose arguments are a mitigation level�de�ned by the

set of real numbers�and responses are mitigation e�ects�de�ned as the set of nonnegative

real numbers. Assume that decision makers take their baseline projections as given by their

type, and make their mitigation decisions based on this independent mapping. That is,

the function δ(m), with mitigation level m ∈ R, determines the degree to which mitigation

reduces future damages. Speci�cally, it holds that ∂δ/∂m ≤ 0.

Dependent on type θ, an agent derives their expectation of cumulative damages as the

following.

8



Et[Dj|θ,m] = djt + δ(m) · d̂jt′(θ) (2)

where

d̂jt′(θ) =

Et[djt
′ ] if θ = science

djt if θ = myopic

(3)

This paper focuses on only a binary decision to mitigate (i.e., m ∈ {0, 1}). Results under

this assumption will generalize to a chosen mitigation intensity on the closed unit interval,

[0, 1]. When the choice is to mitigate, the action imposes a cost on society. Call this cost of

mitigation, c. An agent weighs this cost against the reductions in damages. Let the marginal

value of these damages (e.g., the social cost of carbon) be a constant at value τ > 0. Further,

the following normalizations are made: δ(0) = 1 and δ(1) = δ ∈ [0, 1]. Under this framework,

we can derive the following value function for community of type θ.

Vi(θ) = max
{
− τ · d̂jt′(θ), −c− τ · δ · d̂jt′(θ)

}
(4)

where the leftmost term inside the brackets represents the loss incurred when the community

does not mitigate, and the rightmost term is the loss under mitigation. From Equation 4,

the policy-maker will choose a mitigation strategy when the following inequality holds.

τ · (1− δ) · d̂jt′(θ)− c > 0 (5)

Whether Equation 5 holds will depend not only on the expected e�ect of mitigation, δ,

but also on an agent's beliefs about future deaths, de�ned in Equation 3. Of course, this

depends on the agent's belief type, θ. The main interest of this paper is in identifying the

distribution of belief types. Section 3, presents the empirical approach used in this paper to
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pin down this estimate of interest.

Cognitive Dissonance: The preceding framework presents the mitigation strategy un-

der an exogenous endowed belief type, θ. We now allow types to be endogenously chosen.

When an agent considers the e�cient strategy for each θ, the cost of mitigation, c, may

justify mitigation under one belief, but not in the other. For example, the agent may choose

to believe that true damages are the minimum of each metric. The chosen belief type will

justify the strategy, and in when choosing non-mitigation choice, will rationalize the avoid-

ance of cost, c. This of course does not circumvent the true external costs to be incurred in

future periods as a result of this bias.

When an agent exhibits cognitive dissonance, their belief type will be that which maxi-

mizes the expected utility across mitigation strategies�de�ned by Equation 4. The following

describes the adapted value function under these endogenous beliefs.

Vi = max
θ

{
max

{
− τ · d̂jt′(θ), −c− τ · δ · d̂jt′(θ)

}}
(6)

3 Empirical Design

3.1 Model

The empirical approach in this paper proceeds in two phases. First, a simpli�ed version of

Equation 4 is estimated, which allows us to examine the extent to which communities might

place more emphasis on current damages versus projected future damages. This allows us

to examine what we interpret as a baseline revealed belief or relative emphasis placed on

one potential metric over another in making mitigation decisions. Importantly, the extent

to which the estimated parameter is interpreted strictly as beliefs may be confounded by the

salience of one metric or other constraints. We do not claim that a general underutilization

of scienti�c forecasts is solely due to one's biased beliefs.

The second phase allows the revealed utilization of each forecast estimate to vary based

on their relative magnitude. When scienti�c projections are pessimistic, implying a lower rel-

ative expected utility of mitigation, agents will place more weight on contemporary outcomes
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to rationalize their choices.

Taking the model to the COVID-context, the community chooses mitigation, in the form

of staying home when the marginal damages abated by doing so exceeds the marginal costs.

We measure mitigation on a daily frequency as the share of a 24 hour day the residents of

a community stay at home. Section 4 describes how this measure is derived. The agent

can use two sources of information to make mitigation choices: current death levels and

forecasts from the scienti�c authority�in this paper, the Institute for Health Metrics and

Evaluation (IHME). Let the marginal utility of mitigation for an agent i from state j on day

t be described by the following function.

uijt = c0 + β ·
(
αi · Et[djt′ ] + (1− αi) · djt

)
+ ξjt + εijt (7)

where β encompasses both the damages and the mitigation e�ect (δ and τ in Equation

5). Et[djt′ ] represents the scienti�c projection for the next period and djt represents cur-

rent damages�the myopic beliefs. c0 represents nonzero costs of mitigation. ξjt represents

unobserved, state-level utlity, and εijt represents unobserved, individual-level utility.

The two terms, β · αi and β · (1 − αi), represent the implied marginal disutilities from

an increase in scienti�cally projected and contemporary damages, respectively. The agent-

speci�c parameter, αi ∈ {0, 1}, parameterizes an agent's belief type. In the framework of

Section 2, αi = 1 represents the type who internalize the scienti�c projection and αi = 0

represents the type who holds myopic beliefs.

Given the high-frequency, daily observations in the data, we extend the model beyond the

two-period framework to allow for decisions to be made on expectations over a pre-established

time-horizon. We observe daily scienti�c projections as of a current date over the course of

a signi�cant number of days into the future. Therefore, these longer run forecasts can be

incorporated into the model. For myopic beliefs, expectations from Equation 3 generalize

to expected cumulative damages of T · djt over the course of a T -day time-horizon. Thus,

de�ne the alternative utility representation under a T -day time-horizon as follows.
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uijt = c0 + β ·
(
αi · Et[dj|T ] + (1− αi) · Tdjt

)
+ ξjt + εijt

= c0 + β · d̂jt(αi) + ξjt + εijt

(8)

where Et[dj|T ] =
∑T

s=1Et[djt+s] and d̂jt(αi) is de�ned in a similar matter as Equation 3.

In the context of COVID-19 deaths, the chosen time-horizon should be consistent with

expectations on how long an infected individual may be contagious for. As the time of

infection is estimated to be roughly two weeks, we shouldn't expect mitigation today to

a�ect deaths past this point. Thus, for the paper's main speci�cation we choose T = 15, but

present estimates for a range of values.

When unobserved individual utility, εijt, is an iid draw from the Extreme Value, type I

distribution, the expected maximum utility derived from i has the following form.

IVjt(α) = log(1 + exp(c0 + β · d̂jt(α) + ξjt)) (9)

This term is often referred to as the agent's inclusive value. Under cognitive dissonance,

an agent will endogenously choose α which maximizes their expected utility. Whether α = 1

then depends directly on the relative magnitude of IV (1) over IV (0). We parameterize this

probability using a logistic regression by estimating the following equation.

Pr(α = 1) =
exp(α̃0 + α̃1 · IV (1))

exp(α̃0 + α̃1 · IV (1)) + exp(α̃1 · IV (0))
(10)

Given this framework, we estimate a nested logit model to identify the parameters in

Equation 10. For identi�cation, the model leverages both level variation in each measure

of damages�contemporary damages and scienti�c forecasts�in addition to their relative

values. Their relative values are assessed as the di�erence IV (1)−IV (0), implicitly included

in Equation 10. The observed mitigation shares are parameterized according to the following

function.
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Pr(mitigate)jt = Pr(α = 1) · Pr(c0 + β · d̂jt(1) + ξjt + εijt > 0) (11)

+ Pr(α = 0) · Pr(c0 + β · d̂jt(0) + ξjt + εijt > 0)

=
exp(α̃0 + α̃1 · IV (1))

exp(α̃0 + α̃1 · IV (1)) + exp(α̃1 · IV (0))
· exp(c0 + β · d̂jt(1) + ξjt)

1 + exp(c0 + β · d̂jt(1) + ξjt)

+
exp(α̃1 · IV (0))

exp(α̃0 + α̃1 · IV (1)) + exp(α̃1 · IV (0))
· exp(c0 + β · d̂jt(0) + ξjt)

1 + exp(c0 + β · d̂jt(0) + ξjt)

3.2 Base framework

As the data begin on January 1, 2020�before the �rst COVID death was reported�this

establishes two di�erent baselines for the outcome variable: pre-COVID deaths and pre-

IHME reports. State-level reported deaths have staggered start times, however, all state-

level IHME projections report at the same dates. While we are able to exploit variation in

deaths across states and over time, identifying variation for projections will mainly derive

from the abrupt projection updates, and heterogeneity in these updates across states. The

following equation is estimated.

yjt =ω0 · projectionjt × post reportt + ω1 · current deathsjt + µt + γj + ξjt (12)

where post reportt is an indicator for the timing of the �rst IHME report (common across

all states) and projectionit represents the projected deaths for state i as of day t, for a pre-

established T -day time horizon. The main speci�cation uses T = 15, but other horizons are

examined in Section 5. If only one projection were released, this value should be expected

to evolve smoothly over time. However, regular adjustments to the IHME model produce

discrete jumps in its value, as illustrated in Figure 1. deathsjt represents reported deaths

for state j on day t. To maintain similar scales for each regressor, regardless of T , we

speci�cally use deaths per 10,000, where projections represent the mean predicted deaths

per-day over the T -day horizon.7 The estimates are also reported with, and without state-

7This is in contrast to the speci�cation in Equation 8, which multiplies current deaths by T , rather than
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level trends. Finally, the base speci�cation controls for a full set of state and day-of-sample

�xed e�ects�γj and µt, respectively.

A binary choice model is estimated for the decision to stay home. The parameters are

estimated within a logit framework and, as observed at-home shares are always between

zero and one, we can linearize this model by inverting the function. Therefore, the outcome

variable of interest becomes the logit-inverse share of time spent at home, or log(%home)−

log(1−%home).

The direct coe�cients of interest in the model are ω0 and ω1. These are analogous to β ·αi
and β · (1− αi) in Equations 7 and 8. The paper focuses less on the direct interpretation of

these coe�cients, as interpretation would be contingent on the imposed time-horizon. Of key

interest is the derived parameter α = ω0/(ω0+ω1). All speci�cations present standard errors

clustered at the state-level. Standard errors for α are approximated by the delta method.8

Estimates from Equation 12 allow us to infer something about the relative utilization of

each measure of damages. This is our baseline measure of α. While informative, the inter-

pretation of this estimate is convoluted due to the role of salience in contemporary versus

projected damages. Thus, a low estimate of α from this speci�cation may not be strictly

due to skepticism of scienti�c estimates or a myopic bias. However, it should properly reveal

how much mitigation e�orts hinged on leading scienti�c estimates, which we believe has its

own value. Of particular interest in this paper is whether α changes when one measure of

damages becomes more favorable than the other. Thus, our primary speci�cation will pre-

dominately leverage the relative di�erences between the two. In this paper, this relationship

is derived from a nested logit speci�cation, presented in Equation 11. In Appendix C we

present an alternative approach that estimates a varying α within a standard logit frame-

work, synonymous to Equation 12. This alternative framework allows each damage term

to enter as a quadratic such that there is a non-constant marginal e�ect on each term and,

thus, a non-constant derived α.

dividing projections by T . Results for α will be identical, due to scaling.
8The asymptotic variance of α is approximated by the following.

V ar(α̂) ≈
( 1− α̂
ω̂0 + ω̂1

)2
· V ar(ω̂0) +

( α̂

ω̂0 + ω̂1

)2
· V ar(ω̂1)− 2 · α̂ · (1− α̂)

(ω̂0 + ω̂1)2
· Cov(ω̂0, ω̂1)
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4 Data

This paper estimates the impact of projected and actual COVID-19 deaths on mitigation

e�orts. Mitigation outcomes are proxied for using metrics of social distancing, mainly, phys-

ical mobility data. Thus, the primary data sources used in this paper include (1) geolocation

data from SafeGraph Inc., (2) actual COVID-19 death counts from the John Hopkins Uni-

versity (JHU), and (3) projected COVID-19 deaths from the Institute for Health Metrics

and Evaluation (IHME). The study period for this paper is the entire year of 2020, where

an observation is a state-day. The analysis is conducted on all 50 states, plus the District of

Columbia.

SafeGraph data

The ultimate goal is to measure revealed utilization of scienti�c projections by observing

communities' actions in terms of mitigation. At least early on in the pandemic, social dis-

tancing, was one of the most obvious types of mitigation e�orts. To derive a meaningful

metric of social distancing, we make use of anonymized geolocation data produced by Safe-

Graph Inc. SafeGraph partners with mobile application services that have opt-in consent

from users to collect location data. These partnerships allow SafeGraph to track location

data from approximately 35 million unique devices in a given month. The company makes

these data available for free to researchers as part of their COVID-19 Data Consortium.

Access to the data are available to free users at the census block group level. Block groups

with fewer than �ve observations are omitted. Give the unit of observation for the IHME

data, we aggregate these data to the state-level, weighting block groups by population levels.

Importantly, the data allow us to track mobility at a daily frequency.

The primary mitigation metric used in this paper is the block group level, median home

dwelling time, reported by SafeGraph. The main metric of interest in this paper is the share

of time at home. The share of time at home is de�ned as follows.

% at homejt =
minutes at homeit

1, 440
(13)
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where minutes at homeit is the home dwelling time in minutes for state j on day t, and

1, 440 is the number of minutes in a day. This measure lets us generalize mitigation beyond

a simple binary metric, allowing us to measure responses on an intensive margin.

It is important to point out several limitations of these SafeGraph data. SafeGraph

provides, arguably, some of the most comprehensive data on mobility�observed behavior

essential for this paper. However, the data are representative only for the subgroup of in-

dividuals who 1) own a smartphone and 2) have consented to location data collection. As

interest is in measuring the impact of deaths and projected deaths on mitigation, this will

only bias the estimates when mitigation responses to these deaths coincide with underrep-

resented states.9 Additionally, the data is collected through regular �pings� to the devices,

rather than continuously monitored throughout the day. This implies that frequent short

trips may be missed in the calculation of time at home. Similarly, this will only bias the es-

timates when more frequent short trips coincide with mitigation responses to deaths. State

�xed e�ects are included to account for any of these potential confounders that may re-

main constant within states; for example, if denser populations produce shorter trips and

a stronger response to deaths. Finally, the state-level measure of home dwelling time is

the average of block group-level, median estimates, produced by SafeGraph. This should

not directly bias estimates; although, it produces a slightly di�erent interpretation than if

SafeGraph were to present estimates for mean dwelling times. This distinction should only

make a meaningful di�erence when the distribution of dwelling time is substantially skewed.

John Hopkins University COVID-19 data

This paper uses deaths as its preferred measure of the damages associated with COVID-

19, and as a primary driver of mitigation strategies taken by communities. Deaths are a

salient measure, widely reported, and were easily accessible during the pandemic. COVID-

19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns

Hopkins University is one such source of deaths data (Dong, Du, and Gardner, 2020). The

CSSE publishes live and historical COVID-19 cumulative cases and counts on their GitHub

9It's important to note, as ultimate interest is the ratio of two estimates, any bias that is constant across
the two estimates on deaths and projected deaths will cancel out.
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account. Data were tracked beginning in January 2020, and are gathered from a multitude

of sources, including news conferences, local government databases, and o�cial government

and public health reports.

In their published cumulative deaths, the CSSE includes both con�rmed and probable

deaths. Local governments will often report a COVID-19 death as probable when COVID-19

deaths are listed on the death certi�cate as the cause of death or a signi�cant contributing

condition, but where there has been no positive con�rmatory laboratory test. As this paper

is primarily interested in the response to information, we do not expect the inclusion of

probable deaths to confound the estimates.

Institute for Health Metrics and Evaluation projections

The IHME model (IHME and Murray, 2020) is arguably the most reputable source for

projections of COVID-19 deaths. This is the model favored by the White House and most

notably cited by the Coronavirus Task Force in multiple national press conferences. For this

reason, it is likely the most salient source of estimates for local communities.

The institute makes its projections on a variety of outcomes, including hospitalizations,

ventilator utilization, rates of infection, and deaths. The projections are partitioned by state

and produced in an e�ort to inform local policy and health system responses.

The model has changed rapidly as the dynamics of the pandemic evolved. Updates to

the model were made on a frequent basis. The average frequency of release between March

25 and June 27, 2020 was once every 3.4 days, with a range of 1 to 11, and an interquartile

range of 1 to 5. The distribution of report-to-report percentage changes in remaining deaths,

15 days out, is presented in Figure 2. The distribution of inter-report estimates are reported

at the state-report level and are based on projections for the next 15 days out. Occasionally,

a new model released presents drastically di�erent projections from those of a day prior. For

example, the May 4 release produced national estimates 66 percent higher than the previous

report, released 6 days earlier. The April 5 model reported estimates 45 percent higher

on average than the previous report, 4 days earlier. National averages for the two death

metrics�current deaths and projected deaths�are illustrated in Figure 1. Throughout the

paper, deaths and projected deaths are reported as the average number of deaths per 10,000.
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In the case of the projections, this average is taken over the next T days. Key summary

statistics and baseline values of the key variables in this paper are reported in Table 1.

5 Estimating Revealed Utilization of COVID-19 Projec-

tions

5.1 Event study speci�cation

The variation leveraged in the projection metric makes it unique from a standard di�erence-

in-di�erences setting in that there are multiple events, de�ned by the publication of a new

projection. Illustrating the estimates in a standard event study �gure is di�cult as the

dynamic e�ects from one projection cannot be easily disentangled from the publication of an

updated projection. Disentangling these two e�ects is not of particular interest in this paper,

however, illustrating parallel trends is important for the credibility of the paper's empirical

design.

An event study speci�cation is estimated using the timing of the �rst forecast as the

main event time. Doing so allows for a clearly de�ned pre-treatment period, when no known

forecast was available. The following equation is estimated, where the pre-treatment periods

serve as placebos.

yjt =
L∑

s=−L

ω0s · projectionjt0 × 1(t = t0 + s) +Xjtβ + µt + γj + ξjt (14)

where projectionjt0 are projected deaths for state j reported at the initial publication date,

t0: March 25, 2020. As all states share a common forecast publication timing, identi�cation

in this paper relies on intensity of these projections levels. A death projection level of zero

is analogous to a full control group. 1(t = t0 + s) indicate dates lagging or leading initial

publication and ω0s represents the estimated marginal e�ect at lag or lead s, where s < 0

represent placebo e�ects. Importantly, Xjt includes dynamic controls for actual deaths in

order to isolate the response to the projections.
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Results are presented in Figure 3 as the coe�cients on at-home percentage (see Equation

13). Lags and leads are examined on a weekly scale, where the total number of lags/leads

is symmetric at L = 4 weeks. The �rst lead is normalized to zero. Note that the dynamic

increase of treatment may not be due to the lagged response to the initial forecast, but likely

encompasses responses to updated forecasts.

5.2 Standard logit estimates

The main results from Equation 12 are reported in Table 2. The speci�cations use projected

deaths on a 15-day time horizon. As described in Section 4, a 7-day moving average version

of reported deaths is used. By doing so, we seek to smooth through irrelevant noise in

reporting error (as observed in Figure 1), and better proxy for the measure which is actually

internalized on a daily basis by individuals. Rather than aggregating our data to weekly

observations, this approach will maintain the variation in the projection updates. Results

for alternative moving average lengths are examined in Appendix B.

Columns 1 and 2 present the reduced form e�ects of projected deaths and current deaths,

respectively, in two separate speci�cations. These two variables are certainly correlated with

each other. The IHME projections are not only based on assumptions of future behavior, but

also, prior trends in deaths. Thus, to isolate variation in these projections, independent of the

current state, we include the two in the same speci�cation. As expected, doing so reduces the

magnitude of each coe�cient. This estimate is presented in Column 3 and controls for state

and day �xed e�ects. Column 4 introduces state time trends, further isolating the discrete

changes in updated projections. Doing so results in a slight increase in the magnitude of

the response to both projections and actual deaths, and a moderately larger estimate on

α; though, not statistically di�erent from the base speci�cation. For robustness, we allow

for time-varying di�erences across states with di�erent baseline projections. Doing so allows

trends to vary based on a state's initial projection levels on March 25, 2020, and isolates

variation solely in the updates to these projections. This speci�cation is presented in Column

5, which results in very similar estimates.

As results in Table 2 are from a logit speci�cation, the direct estimates on deaths and

projected deaths can be interpreted as the marginal e�ect of deaths per 10 thousand on the
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log-odds ratio of staying at home. Appendix A reports estimates from a linear probability

model. Results yield very similar estimates for α, but with a simpler to interpret result for

each death metric. The marginal e�ect of one additional death per 10 thousand is estimated

at a 20 percentage point increase in stay-at-home probability. This is from a baseline stay-

at-home average of 46 percent (see Table 1). As for projections, an average increase of one

per 10 thousand projected deaths per day, for the next 15 days, is estimated to increase

stay-at-home probability by about 10 percentage points.

Estimates from Table 2 use a 15-day time-horizon for the projection length. While a 15-

day window is consistent with the time an infected individual is expected to be contagious for,

one would expect the magnitude of this estimate to vary based on the time-horizon chosen.

As less informative variation is added to the variable by expanding the time window, we

should expect the estimate to attenuate. Further, as variation close to the present period

is likely more informative, the magnitude of the estimate would be expected to increase.

This is illustrated in Figure 4, which estimates the base speci�cation for several di�erent

time-horizons in 5-day increments, between 5 and 40 days out. Not surprisingly, the largest

estimate is for the narrowest time-window estimated of T = 5. This produces an estimate

for α of about 0.34. Further, while the estimates seem to decay as larger time-windows are

used, it seems to level o� at a rapid pace at around 0.2. Thus, while there is variability

in estimates for α across the chosen time-horizon, it seems that the range of estimates is

relatively low.

An alternative mechanism for these results is that individuals respond directly to contem-

porary damages to mitigate their own private risk. This is not a dynamic decision and it is

reasonable to suspect that current damages are a strong indicator of current risks. Examin-

ing lockdown measures would overcome this problem, however, lockdowns are susceptible to

reverse causality issues. How contemporary and projected damages a�ect lockdowns are of

interest in this paper, but now how lockdowns might a�ect damages. Using only individual

actions overcomes this problem.

To test whether private risk mitigation is a factor, we incorporate lagged damages into

Equation 12. While private risk mitigation should only be a response to contemporaneous

changes in damages, lagged responses are likely a function of inertia in policies. An example
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would be a lockdown measure implemented in response to a current surge in deaths that has

long-term e�ects on future social distancing, due to the time-frame in which the lockdown

applied to.10 Table 3 reports estimates from a standard logit speci�cation, while including a

1-week lag of deaths and projected deaths. If we expect the lagged responses to be relevant

only through a dynamic response, then the ratio of these estimates should provide consistent

estimates for α. Using the lagged death measures to calculate α produces similar results.

Column 2, which includes state time trends produces the largest upward adjustment of about

0.1, relative to the unlagged version of this speci�cation in Column 4 of Table 2. In either

case, we fail to reject that these estimates are statistically di�erent from those produced in

the unlagged version.

5.3 Mixed logit estimates

When agents generating the data are each endowed with a given αi ∈ {0, 1}, the observed,

state-level outcomes are a mixture of the actions of each type. This is in contrast to the

representative utility function estimated in Section 5.2, which incorporates the parameter

α ∈ [0, 1] into its form. To account for the mixing of di�erent strategies performed by each

type, this section of the paper presents estimates from a mixed logit speci�cation.

The �rst speci�cation estimates α and β directly, allowing α to operate as a mixing

parameter. An analytical solution to the inverse probability function is no longer feasible,

thus, we implement the �xed point iteration procedure proposed by Berry, Levinsohn, and

Pakes (1995). Doing so allows us to easily control for a full set of state and day �xed e�ects.

Estimates are reported in the �rst column of Table 4. Standard errors are bootstrapped

on state-level clusters. Of main interest is the estimate for α, which is nearly identical to

those of Column 3 in Table 2. This suggests that modeling the mixing of strategies directly

does not contribute signi�cantly to the identi�cation of α. An estimate of β can be derived

from the standard logit estimates in Table 2 by dividing the estimate on projected deaths

by the estimate for α. In Column 3 this produces an estimate of about 1.2, similar to that

estimated in Table 4.

10This is just one of many examples. Other examples may include new bar and restaraunt restrictions,
or even private businesses going remote.
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5.4 Cognitive dissonance estimates

Cognitive dissonance theory (Festinger, 1957) argues that individuals seek psychological

consistencey, for example, through their actions and their beliefs. Internal inconsistency

leads to stressful behavior for agents, often causing them to generate consistency by altering

beliefs in a manner that rationalizes their behavior, or by avoiding particular information

that leads to this dissonance. The theory suggests that by manipulating one's own beliefs in

such a manner, individuals reduce mental stress. Such behavior can ultimately lead people

to believe whatever is most compatible with their preferred behavior.

When mitigating is costly, individuals may choose to alter their beliefs in order to ra-

tionalize less costly behaviors. Intuitively, this is more likely to occur when making the

decision to mitigate external costs as opposed to private costs; as in the latter case the

individual may have an incentive to rationally incorporate the most accurate information

into their decisions. In the context of this paper, someone might selectively choose to form

their beliefs based on current deaths over scienti�c projections (αi = 0) if the outlook seems

more optimistic. By leaning in favor of the more optimistic forecast, an agent can maintain

consistency with their preferred, low-mitigating behavior.

As opposed to the baseline estimates for α, which reveal the average utilization of each

metric, the speci�cation illustrated in Equation 10 incorporates the relative di�erence in

disutility from each damage estimate into the parameter. Parameter estimates from Equation

11 are presented in Table 4. The coe�cient estimate for α̃1 provide evidence of cognitive

dissonance. The negative sign suggests that utilization of the scienti�c projections of damages

decreases as their magnitude increases, relative to contemporary damages.

Figure 5 illustrates these estimates graphically. The estimated function for α is plotted

over its primary argument�the relative di�erence in inclusive values, scaled to the mean

contemporary damage levels. This provides an interpretation of the relative value of the

projection, in percentage terms. The function is evaluated for values outside the range of

the vast majority of our data. This is indicated by the histogram, which plots the frequency of

the relative inclusive values in our data. Plotting it outside of this range illustrates the large

di�erences in internalization of projections that can occur when distant damage estimates

22



signi�cantly di�er from contemporary states. For easier interpretation, we calculate the slope

of the α function with respect to projected damages. The marginal e�ect is evaluated across

all observations in our data. Estimates suggest that a doubling in the value of the projected

damages, all else equal, produces a 4 percent reduction in the value of α.

6 Application to Climate Policy

6.1 A framework for calculating a feasible Pigouvian tax on CO2

In this section, the model that has been discussed thus far in the context of the COVID-

19 pandemic is applied to the context of climate change. We begin by generalizing the

framework in Section 2 to allow damages to occur over an in�nite time-horizon. Let the

marginal value of a ton of carbon emitted at time t on damages in period t + s, s ≥ 0, be

described by the function dt(s), where the i subscript is omitted to indicate a global damage.

The present discounted value of a ton of carbon emitted today is as follows.

Dt =
∞∑
s=0

( 1

1 + r

)s · dt(s) (15)

where r is the social discount rate. Social leaders who take science as the truth condition

their mitigation decision on the scienti�c forecast. These forecasts establish the best available

estimate for the future cost of carbon. Thus, we de�ne the social cost of carbon in this paper

as the following.

SCCt =
∞∑
s=0

( 1

1 + r

)s · Et[dt(s)] (16)

where Et denotes the expectation, conditional on information available at time t.11 In

contrast, the climate skeptic does not form their expectations according to scienti�c forecasts,

11This notation omits a third time dimension for simplicity. Of course, the social cost of carbon can be
evaluated for future periods, conditional on expectations today.
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but conditions on contemporaneous damages. We assume those with myopic beliefs take

current damages and projects the same state into the future, inde�nitely. Further, we assume

that they discount these expected damages according to the same social discount rate, r.

This creates a two-type analogue to Equation 3. De�ne expectations over the cost of carbon

as the following.

Et[Di|θ] =

SCCt if θ = science

1+r
r
· dt(0) if θ = myopic

(17)

where the myopic beliefs represent the discounted sum of constant damages at time t, dt(0).

Similar to the framework in Section 2, the policy-maker forms their mitigation strategy con-

ditional on its expectations of future damages. Here, we discuss mitigation strategies in the

context of a Pigouvian tax on carbon emissions. When marginal damages are constant over

consumption, the e�cient tax is equal to the cost of damages. However, given uncertainty

over future damages, the ultimate mitigation strategy is the tax which conforms with the

policy maker's belief type.

Given a distribution of belief types, we can calculate a perceived social cost of carbon,

which places relevant weights on each type's expectations. The perceived social cost of

carbon is a feasible tax, in that it takes into account the mitigation strategies each type

�nds optimal. Thus, of ultimate interest is the following expression.

Perceived SCCt = α · SCCt + (1− α) · 1 + r

r
· dt(0) (18)

6.2 The (perceived) social cost of carbon

The ultimate interest in this section of the paper is the value of Equation 18, which may be

interpreted as a feasible tax on CO2 emissions. An obvious caveat of this portion of the paper

is the contrast between the model estimated in this paper in the context of COVID and the

model applied to the context of climate change. While damages associated with the virus
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may be converted to similar scales as those from CO2 emissions (e.g., economic welfare),

the manner in which policy makers internalize the damages from each source may di�er.

Further, it is possible that the distribution of belief types for COVID are quite di�erent from

belief types for climate change estimates. These are starkly di�erent mechanisms which may

in�uence information attainment in contrasting ways. Therefore, caution should be made

in directly interpreting the estimated α in Section 5 as exactly equal to α in the climate

setting. Rather, one should interpret the results that follow as expressing an analogue to

the policy response to COVID. That is, as the estimated α expresses implied myopia in the

COVID response, this section asks what this would mean for climate policy, if the response

to climate change were similar.

To calculate Equation 18, we make use of the Dynamic Integrated Climate-Economy

(DICE) model (Nordhaus and Boyer, 2000; Nordhaus, 2008). Speci�cally, we use the DICE-

2016R model (Nordhaus, 2017, 2019) to gather information about the estimated social cost

of carbon, in addition to estimated contemporaneous damages�both terms in Equation 18.

This integrated assessment model simulates the impact of an incremental increase in CO2

emissions at a present period on future climate states. The model then applies a damage

function to estimate its impact on social welfare. The ultimate result is a counterfactual

path of economic welfare, for which inference is made against a baseline.

Marginal damages change nonlinearly as the predicted stock of carbon in the atmosphere

changes over time. Thus, contemporaneous damages, dt(0), change over t. The DICE model

is used to calculate these damages for each t between 2020 and 2100. We use the model's

speci�cation which incorporates optimal carbon taxes into its projections and uses a 5 percent

social discount rate. Ultimately, the social cost of carbon estimates vary to a degree from

those used by the EPA, as DICE is only one of several that the EPA incorporates into their

estimates.12

Figure 6 plots the path of SCC, as predicted by DICE. The �gure also plots two di�erent

measures of the perceived SCC in Equation 18. The �rst is derived using the base estimate

of α = 0.26, presented in Section 5. This is the constant value of α, which this paper argues,

illustrates the implied weighting of projections versus contemporary damages in response to

12See Interagency Working Group on Social Cost of Greenhouse Gases (2016).
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the COVID-19 pandemic. When applied to the climate context, this level of attention to

scienti�c estimates would suggest a signi�cant undervaluing of the cost of carbon. While

DICE estimates a SCC equal to $37 per ton in 2020, the implied valuation is half that, at

about $19. The implied valuation approaches 70 percent of full valuation in 2100.

The second valuation measure applies the non-constant version of α, estimated in Section

5.4. A major caveat here is the substantial di�erence between contemporary carbon damages

and the present, discounted values in the setting of predicted climate damages. While the

range illustrated in Figure 5 approaches 50 percent, in the climate setting this di�erence

begins at 105 percent in 2020. This generates a predicted value of α near zero. Using such

a weight implies that agents place full emphasis on current damages in 2020�which is one-

third of the SCC. This measure of α does not approach 5 percent until 2285�when the

di�erence between contemporary and expected future damages is 16 percent. By 2100 this

measure generates an implied valuation of only 60 percent of the full SCC.

7 Conclusion

Beliefs about the inevitable risks of climate change are a determining factor for whether

e�cient policy is feasible to implement. In order to internalize the costs of damaging actions

today, we must �rst understand the true value of these costs. While activities that impose

contemporaneous damages are salient, actions that produce signi�cantly lagged responses

make it di�cult to properly infer cause and e�ect. This is most prominant in the domain

of climate change, where carbon emitted today can stay in the atmosphere for hundreds of

years into the future. Su�ce to say that the realized damages at the time of emission are not

representative of its long-run impact on the environment. Understanding these costs often

means relying on the experts, which some may not be willing to do.

The main result of this paper suggests that scienti�c projections may not be internalized

in the decision making process to the degree to which they should be when they represent the

best available information. The mechanism is likely some mixture of skepticism, inattention,

and cognitive dissonance. The paper demonstrates a general underweighting of scienti�c

estimates in decision-making, opting instead for a heuristic projection based on the current
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state. In the context of the COVID-19 pandemic, where projections were both salient�

through means such as daily White House press conferences�and readily available through

the IHME, this paper show that mobility outcomes are instead driven by current measures

of deaths, on a scale of three to one. Evidence is provided to suggest that these e�ects

are largely driven by the dynamic decision to mitigate societal damages, rather than an

individual's decision to mitigate personal risk.

Finally, this paper presents evidence that agents strategically choose more favorable fore-

casts when making mitigation decisions. In the trade-o� between a naïve expectation of

future damages that is strictly based on the current state, versus a more objective outlook

based on scienti�c analyses, we show that, while agents on average prefer the myopic ex-

pectation, they will shift in favor of a scienti�c perspective when the projection is relatively

more optimistic. This evidence is suggestive of an inherent cognitive dissonance among in-

dividuals, where beliefs adapt to be most consistent with the mitigation strategy that an

agent ultimately prefers. Unfortunately, this behavior will not produce a socially e�cient

outcome in policy design.

In the context of climate change, when emissions today have costly outcomes for future

generations, incorporating these damages into carbon intensive activities requires a good

understanding of the social cost of carbon. When environmental impacts have uncertain

outcomes, the e�cient strategy is that which incorporates all available information�the

crux of rational expectations theory. In practice, the manner in which agents derive their

expectations is not as simple, and will often come about through ideological, rather than

objective means.

While this paper looks to apply its �ndings to the contexts of climate change, this exercise

is merely an extrapolation for illustrative purposes. The idea is to better understand the

costs of this revealed subjective belief formation on a broader scale. In the context of climate

change, the relevance of cognitive dissonance may be exacerbated due to the disconnect

people have from these future events. However, better understanding the role this behavior

plays in the realm of climate policy requires further research. A better understanding of

how climate beliefs are formed is essential in properly guiding e�cient policy design in the

future.
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8 Figures

Figure 1: Daily Deaths and 15-Day Out Projected Average Daily Deaths (per 10,000)
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Notes: The 15-day projected risk, in black, takes the daily 15-day out projection from the given date, and computes

the average daily number deaths per 10,000. In light gray represents the current level of daily reported deaths and

dark gray represents a 7-day moving average of reported daily deaths, each per 10,000.
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Figure 2: Distribution of Report Update Percent Changes in Projected Deaths
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Notes: The above reports the distribution of report-to-report percentage change in the 15-day projected outlook.

All changes are mainly a function of adjustments to the IHME model. All observations above 300% are included

into the 300% bin.
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Figure 3: Event Study of First Projection Release
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Notes: The above reports the coe�cient estimates from the event study speci�cation in Equation 14. All periods

along the horizontal axis are weeks, relative to the publication of the intial forecast: March 25, 2021. The marginal

e�ects are for a 1 per 10,000 increase in average daily projections for the 15-day forecast. The coe�cient for the

one-period lead is normalized to zero.
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Figure 4: Estimate of α Across Di�erent Time Horizons
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Notes: The above reports the coe�cient estimates for projected deaths from the base speci�cation in Equation 12

across di�erent projection time-horizon. Estimates are reported for T = 5 to T = 40, in increments of 5.
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Figure 5: Non-Constant α by Relative Projection Magnitude
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Notes: In solid black are the estimates from Equation 10 with the corresponding bootstrapped 95% con�dence

intervals. This is a smooth function of the relative inclusive values for each damage metric. Scatter points are the

model-predicted estimates plotted against the log di�erences between the two damage metrics. Estimates suggest

an average 10.7 percentage point reduction in α for a 10 percent relative increase in the scienti�c projection.
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Figure 6: Implied Valuations of Carbon using α Estimates

0

100

200

300

2020 2040 2060 2080 2100

year

SCC
Perceived-1
Perceived-2

Notes: In solid black represents the social cost of carbon estimates generated from the DICE-2016R model (Nord-

haus, 2017, 2019). Perceived-1 represents the analogous weighted average of contemporary damages from the DICE

model and social cost of carbon (Equation 18) using an estimate of α of 0.26. Perceived-2 uses the non-constant

α estimates (Equation ??).
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9 Tables

Table 1: Summary Statistics

Mean St. Dev. Interquartile Range

At Home Percent 0.461 0.072 [0.421, 0.501]
Daily Deaths, per 10,000 0.028 0.052 [0.000, 0.033]
Projected 5-Day Avg, per 10,000 0.027 0.040 [0.000, 0.034]
Projected 15-Day Avg, per 10,000 0.028 0.041 [0.000, 0.036]
Projected 30-Day Avg, per 10,000 0.028 0.039 [0.000, 0.037]
IHME Update Frequency (days) 5.5 3.9 [2.0, 7.0]

Notes: At Home Percent is the fraction of time spent at home during the day

(Equation 13). Daily deaths and projected deaths are reported in deaths per

10,000, where projected deaths are average daily deaths over the T -day forecast.

IHME Update Frequency is the number of days between forecast updates.
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Table 2: Relative Mitigation Responses to Deaths and Projected Deaths

(1) (2) (3) (4) (5)

Projected Deaths 0.98*** 0.32*** 0.40*** 0.36***
(0.11) (0.11) (0.10) (0.11)

Current Deaths 1.10*** 0.88*** 0.95*** 0.99***
(0.12) (0.13) (0.16) (0.14)

α 0.264*** 0.297*** 0.266***
(0.084) (0.076) (0.076)

N 18253 18253 18253 18253 18253
State FEs Yes Yes Yes Yes Yes
Day FEs Yes Yes Yes Yes Yes
State Trends Yes Yes
Day × First Projections Yes

Notes: * p < 0.1, ** p < .05, *** p < .01. Standard errors, clustered by state,

in parentheses. Standard errors for α are approximated using the delta method.

Column 3 is the base speci�cation from Equation 12. Projected Deaths include the

15-day out forecasts for average daily deaths per 10,000. Current deaths is a 7-day

rolling average of deaths per 10,000.

38



Table 3: Relative Mitigation Responses to Deaths and Projected Deaths

(1) (2) (3)

Projected Deaths 0.26*** 0.32*** 0.24***
(0.10) (0.09) (0.08)

Current Deaths 0.48*** 0.49*** 0.55***
(0.16) (0.17) (0.17)

Lagged Projected Deaths 0.32** 0.41*** 0.33**
(0.16) (0.15) (0.15)

Lagged Current Deaths 0.93*** 0.96*** 1.05***
(0.17) (0.19) (0.18)

α 0.254** 0.390*** 0.309***
(0.120) (0.111) (0.109)

N 17840 17840 17840
State FEs Yes Yes Yes
Day FEs Yes Yes Yes
State Trends Yes Yes
Day × First Projections Yes

Notes: * p < 0.1, ** p < .05, *** p < .01. Standard errors, clustered

by state, in parentheses. Standard errors for α are approximated using

the delta method. Projected Deaths include the 15-day out forecasts

for average daily deaths per 10,000. Current deaths is a 7-day rolling

average of deaths per 10,000. Speci�cations are analogous to Columns

3-5 in Table 2, but including a one week lag in deaths/projected deaths.

Estimates of α are derived from the coe�cients on the lagged terms.
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Table 4: Mixed Logit Results

Base Nested Logit

α 0.263 α̃0 -1.320
(0.076) (0.510)

β 1.196 α̃1 -8.877
(0.111) (4.200)

β 1.300
(0.104)

N 18253 18253
State FEs Yes Yes
Day FEs Yes Yes

Notes: Wild bootstrapped standard errors, clustered by state, in parentheses. The

column labeled �Base� is from a mixed logit speci�cation, where α is a (constant)

mixing parameter. The nested logit speci�cation models α as a function of the

mitigation inclusive values (Equation 11). α̃0 and α̃1 are logit parameters. Each

speci�cation includes state and day �xed e�ects.
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Appendices

A Linear Probability Model

Equation 12 is estimated as a linear probability model, using fraction of time at home

as the outcome variable. The results are presented in Table A.1. Estimates for α are

both quantitatively and qualitatively similar to the results from the logit speci�cation in

Table 2. The results suggest that the marginal e�ect of a one additional death per 10

thousand is a 20 percentage point increase in stay-at-home probability. This is from a

baseline stay-at-home average of 46 percent. As for projections, an average increase of one

per 10 thousand projected deaths per day, for the next 15 days, is estimated to increase

stay-at-home probability by about 10 percentage points.

Table A.1: Relative Mitigation Responses to Deaths and Projected Deaths (Linear Proba-
bility Model)

(1) (2) (3) (4) (5)

Projected Deaths 0.24*** 0.08*** 0.10*** 0.09***
(0.02) (0.03) (0.02) (0.02)

Current Deaths 0.26*** 0.21*** 0.23*** 0.24***
(0.03) (0.03) (0.04) (0.03)

α 0.267*** 0.299*** 0.266***
(0.083) (0.076) (0.073)

N 18253 18253 18253 18253 18253
State FEs Yes Yes Yes Yes Yes
Day FEs Yes Yes Yes Yes Yes
State Trends Yes Yes
Day × First Projections Yes

Note: * p < 0.1, ** p < .05, *** p < .01. Standard errors, clustered by state, in parentheses.

B The Use of Alternative Moving Average Lengths for

Deaths

Tables A.2, A.3, and A.4 present the standard logit results for Equation 12 using alternative

moving average lengths of 3, 5, and 10 days, respectively. The estimates in the main text

use a moving average of 7 days. By doing so, uninformative day-to-day variation based

on reporting error should be smoothed through. This approach should properly discard

variation that may otherwise attenuate the estimates on current deaths, thereby arti�cially
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increasing the magnitude of α.

Table A.2 demonstrates that when using a smaller time-window, estimates for α increase

due to the smaller estimated coe�cient on current deaths. Estimates from the 5-day and

7-day moving averages, from Tables A.3 and A.4, respectively, produce estimates similar to

those reported in the paper.

Table A.2: Relative Mitigation Responses to Deaths and Projected Deaths (3-day MA)

(1) (2) (3) (4) (5)

Projected Deaths 0.98*** 0.52*** 0.62*** 0.62***
(0.11) (0.10) (0.10) (0.11)

Current Deaths 0.92*** 0.60*** 0.65*** 0.63***
(0.09) (0.08) (0.09) (0.10)

α 0.461*** 0.490*** 0.497***
(0.063) (0.058) (0.066)

N 18457 18457 18457 18457 18457
State FEs Yes Yes Yes Yes Yes
Day FEs Yes Yes Yes Yes Yes
State Trends Yes Yes
Day × First Projections Yes

Note: * p < 0.1, ** p < .05, *** p < .01. Standard errors, clustered by state, in parentheses.

Table A.3: Relative Mitigation Responses to Deaths and Projected Deaths (5-day MA)

(1) (2) (3) (4) (5)

Projected Deaths 0.98*** 0.38*** 0.48*** 0.45***
(0.11) (0.10) (0.10) (0.11)

Current Deaths 1.04*** 0.79*** 0.85*** 0.86***
(0.11) (0.11) (0.13) (0.12)

α 0.327*** 0.360*** 0.346***
(0.076) (0.069) (0.074)

N 18355 18355 18355 18355 18355
State FEs Yes Yes Yes Yes Yes
Day FEs Yes Yes Yes Yes Yes
State Trends Yes Yes
Day × First Projections Yes

Note: * p < 0.1, ** p < .05, *** p < .01. Standard errors, clustered by state, in parentheses.
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Table A.4: Relative Mitigation Responses to Deaths and Projected Deaths (10-day MA)

(1) (2) (3) (4) (5)

Projected Deaths 0.98*** 0.31*** 0.38*** 0.33***
(0.11) (0.11) (0.10) (0.10)

Current Deaths 1.12*** 0.90*** 0.97*** 1.02***
(0.13) (0.14) (0.16) (0.15)

α 0.254*** 0.284*** 0.243***
(0.084) (0.077) (0.074)

N 18100 18100 18100 18100 18100
State FEs Yes Yes Yes Yes Yes
Day FEs Yes Yes Yes Yes Yes
State Trends Yes Yes
Day × First Projections Yes

Note: * p < 0.1, ** p < .05, *** p < .01. Standard errors, clustered by state, in parentheses.

C Non-Constant α from Standard Logit

The following modi�ed version of Equation 12 is estimated to allow for non-constant marginal

e�ects on each term.

yjt =ω01 · projectionjt × post reportt + ω02 · projection2
jt × post reportt

+ ω11 · current deathsjt + ω12 · current deaths2jt + λt + γj + ξjt

(19)

From this quadratic speci�cation, a non-constant value for α is derived as the implied

weight placed on the partial e�ects of each term. Speci�cally, an alternative form for αjt is

speci�ed as follows.

αjt =
ω01 + 2ω02 · projectionjt

ω01 + 2ω02 · projectionjt + ω11 + 2ω12 · current deathsjt
(20)

The most signi�cant distinction of this form for α from that in Equation ?? is that it is

simply a function of the levels of each variable, rather than their log di�erence. Estimates

for each term in this framework are presented in Table A.5, under the base speci�cation that

includes state and day �xed e�ects.
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Table A.5: Quadratic Speci�cation of Standard Logit

(1)
Projected Deaths - Linear 0.58∗∗∗

(0.18)
Projected Deaths - Quadratic -1.57∗∗∗

(0.48)
Current Deaths - Linear 1.51∗∗∗

(0.16)
Current Deaths - Quadratic -2.33∗∗∗

(0.36)
State FEs Yes
Day FEs Yes
Observations 18253

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

To plot this modi�ed α in one dimension, I evaluate it at the mean value of current deaths.

The result is now strictly a function of projected deaths. This is illustrated in Figure A.1.

While the interpretation is di�erent from that in the main text, since the domain di�ers,

the graph illustrates a similar result. As projections near zero, the weight placed on them

increases. This suggests that, all else equal, agents favor the metric which produces a lower

level of damages.
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Figure A.1: Non-Constant α from Standard Logit
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Notes: This function is graphed outside of the range of most of the data. See Table 1 for distribution statistics for

projected deaths.

A.5


	Introduction
	Conceptual Framework
	Empirical Design
	Model
	Base framework

	Data
	Estimating Revealed Utilization of COVID-19 Projections
	Event study specification
	Standard logit estimates
	Mixed logit estimates
	Cognitive dissonance estimates

	Application to Climate Policy
	A framework for calculating a feasible Pigouvian tax on CO2
	The (perceived) social cost of carbon

	Conclusion
	Figures
	Tables
	Linear Probability Model
	The Use of Alternative Moving Average Lengths for Deaths
	Non-Constant  from Standard Logit

